Technology Workarounds and Patient Safety

Kathleen Mastrian, PhD RN
Professor Emerita, Nursing, Penn State University
Sr. Managing Editor, OJNI
Principal, Mastrian Consulting
Aims

This study focuses on identifying technology workarounds that have the potential to compromise patient safety.

• Consider characteristics of a safety culture

• Recognize the importance of cognitive informatics principles
 ▪ influence human factors engineering and technology usability

• Examine case reports

• Propose strategies for assessing the characteristics of technology workflow disruptions and for preventing technology workarounds.
Background

• Healthcare technologies are designed to improve the work of managing and delivering healthcare

• Many technologies are focused on ensuring patient safety

• New technologies and safety strategies may disrupt the typical workflow of clinicians

• To meet workload demands, clinicians may use a technology workaround that has the potential to compromise patient safety
Definitions

• Safety Culture
 ▪ Just Culture: System or process issues are identified and addressed
 ▪ Strategies for developing a safety culture
 • Human factors engineering
 • Systems engineering
 • Root cause analysis or failure modes and effect analysis

• Workarounds: deviations from accepted and expected practice protocols

 “Shortly after beginning my career as a new nurse on a med/surg unit, I can still distinctly remember thinking that I can take everything I learned from nursing school and throw it out the window. Looking back after learning about workarounds, I feel almost my entire orientation was based around teaching me how to workaround everything.”
Methods

• Qualitative data collection and analysis
 ▪ RN student (BS and DNP discussion forums)

• Data Collection Prompts
 ▪ Identify a technology workaround that you have personally used or have observed someone else using in a clinical setting
 ▪ Reflect on how the workaround may compromise patient safety
 ▪ Think about the human-technology interface, the technology design, and cognitive informatics and discuss the characteristics of the technology that led to the workaround

• Examine reported cases of technology workarounds (N=26)
Results

- Technology workarounds related to medication administration (N=18)
 - bypassing second clinician verifications for high-hazard medications (N=7)
 - patient ID scanning workarounds (N=6)
 - bypassing smart pump technologies (N=5)
- Inappropriate use of EHR functions for documentation (N=4)
- Medication dispensing system accessibility (N=1)

- Technology malfunction (N=1)
- Audit and tracking of call-center response times (N=1)
- Special circumstances ER(N=1), neonates (smart pump), anesthesia (smart pump)
CASE ILLUSTRATION:

Second Clinician Verification

High-hazard medications require a second clinician to verify the order, dose, route of administration, and patient and then sign-off on the EHR.

- Workaround types
 - Sharing ID badges
 - Sharing passcodes
 - Completing verification somewhere other than patient room

- Reasons given for workaround
 - Difficulty finding another nurse
 - Short staffing
 - Confidence in competency to practice

- Solve the problem by going to biometric verification (fingerprint)
CASE ILLUSTRATION:

Patient ID Scanning

• Electronic medication administration systems (eMAR) require scanning of patient ID band as part of the medication administration process
 ▪ Medication administration populates to the EHR
• EHR function allows printing of additional ID bands
 ▪ Duplicate bands are scanned rather than ID band on the patient
• Reasons for workaround:
 ▪ Too few scanners or malfunctioning scanners
 ▪ Bar code printer generates unreadable labels
 ▪ Bar codes unreadable on patient bands (small wrists)
 ▪ Less disturbing to patient during sleep
 ▪ System allows ID number to be typed in rather than scanned
Bypassing Smart Pump Safety Technology

• Smart pump technology promotes safe administration of IV infusions
 - Software ‘guardrails’ for therapeutic dosing (high/low limits and soft/hard warnings)
 - Guardrails will signal a provider that a proposed medication administration is dangerously high or therapeutically low.

• Reasons for bypassing technology
 - Too many steps involved in programming
 - Incorrect or inconsistent minimum infusion times in drug library
 - Drug libraries did not support use in neonates, anesthesia, certain antibiotics
 - Air-in-line sensors are too sensitive causing multiple alarms
Limits

• Case report sample size is small (N=26)
• Cases are limited to US
• Qualitative methodology does not capture the extent of the issue
Bottom Line

• Technology workarounds compromise patient safety

• Technology designers must consider usability and clinical workflow
 ▪ Design for ease-of-use and intuitive use (seek input by end users)
 ▪ Reprogram and or update drug libraries

• We must promote a culture where healthcare professionals commit to using the technology in the way that it was designed.
 ▪ Identify system weaknesses and barriers
 ▪ Measure/monitor compliance
 ▪ Educate staff

• Organizational culture must embrace the ideas, opinions and strategies proposed by end users to improve the human technology interface.
References
